III Economic Growth

A Introduction to Growth Theory

1 The Importance of Economic Growth

The Significance of 1% Growth in GDP					
Growth Rate (%)	10	7	5	2.5	1
Time to Double Income (Years)	7.3	10.2	14.2	28.1	69.7

2 Some Stylized Facts about Economic Growth (Kaldor, 1963)

- Per capita output grows over time, and its growth rate does not tend to diminish.
- Physical capital per worker grows over time.
- The ratio of physical capital to output is nearly constant.
- The shares of labor and physical capital in national income are nearly constant.
- Per capita output differs substantially across countries.
- The growth rate of per capita output varies greatly across countries and over time.

3 Development of growth theory

3.1 Classical Growth Theories

- Adam Smith (1776) and David Ricardo (1817)
- Thomas Malthus (1798)
- Frank Ramsey (1928)
- Joseph Schumpeter (1934)

3.2 Neoclassical Growth Models

- (i) Solow-Swan Model (1956)
 - Constant returns to scale
 - Diminishing returns to each input
 - Fixed savings rate
 - Exogenous technological progress
 - No technological progress \Rightarrow no growth in per capita income
 - (Transitional dynamics) Lower starting level of real per capita $GDP \Rightarrow higher growth rate$
 - Dynamic inefficiency

- (ii) Cass and Koopmans Model (1965)
 - Endogenous savings rate
 - Competitive equilibrium Pareto optimal

3.3 Early Attempts to Endogenize Technological Progress

- (i) Arrow Model (1962)
 - Learning-by-doing
 - Technological progress unintended by-product of production or investment
 - No compensation is paid to technological progress and capital and labor receive their marginal products
 - Technological progress is endogenous (in the sense that saving propensity affects its time path)
- (ii) Uzawa Model (1965)
 - Optimal accumulation of physical and human capital
 - No compensation is paid to technological progress

(iii) Shell Model (1967)

- Government-financed R&D
- Technological progress is modeled as a result of economic choices
- Strictly decreasing returns
- No growth in per capita income

3.4 Endogenous Growth Models

- Long-run growth rate is endogenously determined
- (i) Capital-based Models
 - Physical and/or human capital accumulation ⇒ economic growth
 - Emphasize externalities of capital accumulation
- (ii) Innovation-based Models
 - Innovation \Rightarrow technological progress \Rightarrow economic growth
 - Stress intentional R&D activities
- (iii) Other Endogenous Growth Models