Public Choice and International Public Goods

Lecture 1 Basic Concepts of the Public Choice Theory

Dr Chen Kang

Public Choice

- Public Choice: economic analysis of non-market decision making; application of economics to political science
- Main issues: politicized economic choice, collective action problems
- Research focuses: theories of state and institution; government decision making behavior; behavior of political parties, government bureaucrats and interest groups; voting rules and behavior of voters; social choice, international relations

Collective Action Defined

• Collective action arises when the efforts of two or more individuals are needed to accomplish an outcome

Collective Action Problems

- 1 + 1 > 2 The aggregate gains to a group from collective action could greatly exceed the sum of gains from independent individual efforts, but it by no means follows from this that the collective action would occur.
- 1 + 1 < 2 Even if it occurs, collective action may fail to achieve an optimal result. Although groups are intended to pursue the collective well-being, the pursuit of private gains by group members may lead to outcomes that spell disaster for collective benefits

Collective Action Problem: An Example

- Jill and Jack both have two pails that can be used to carry water down a hill. Each makes only one trip down the hill, and each pail of water can be sold for \$5. Carrying the pails of water down requires considerable effort. Both Jill and Jack would be willing to pay \$2 each to avoid carrying one bucket down the hill and an additional \$3 to avoid carrying a second bucket down the hill.
- Given market prices, how many pails of water will each child fetch from the top of the hill?

Collective Action Problem: An Example (continued)

- Jill and Jack's parents are worried that the two children don't cooperate enough with each other. Suppose they make Jill and Jack share their revenues from selling the water equally.
- Given that both are self-interested, how many pails of water will Jill and Jack carry?

Payoff Matrix

Jill

	0 pail	1 pail	2 pail
0 pail	(0,0)	(2.5, 0.5)	(5, 0)
1 pail	(0.5, 2.5)	(\$3, \$3)	(5.5, 2.5)
2 pail	(0, 5)	(2.5, 5.5)	(\$5, \$5)

Jack

(Jack, Jill)

Public Goods

- Non-excludable: benefits of a good are available to all once the good is provided
- Non-rival (indivisible): a unit of good can be consumed by one individual without detracting, in the slightest, from the consumption opportunities still available for others from the same unit
- A pure public good provides benefits that are nonexcludable and non-rival between users
- Impure public goods: goods possess benefits that are partially rival and/or partially excludable. They also include those whose benefits are excludable but partially non-rival

Which of the following is a public good?

- Music in the Theater (until seats run out)
- Full moon rising over the sea
- Fish in the ocean
- The roads leading to expressways in rash hours
- TV programs watched on a local television channel
- Project work done by team mates
- Revenue from selling water by either Jill or Jack

Externality

- External to parties of the exchange: the action of one agent influences the welfare, in terms of utility or profits, of another agent and no means of compensation exists
- Externality can be positive or negative
- In the case of positive externality, the good will be under-produced
- In the case of negative externality, the good will be over-produced
- Public good is a special case of positive externality

Free Riders

- Want to enjoy the benefit of a public good, but try to minimize contribution to the public good provision. Free rider usually tries to hide his/her really preference to a public good
- When a good is non-excludable, many people will fail to contribute because they will get the good's benefits free once provided by others

Olson's laws

- First Law: Sometimes, when each individual considers only his or her interests, a collectively rational outcome emerge automatically
- Second Law: Sometimes, the first law does not hold: no matter how intelligently each individuals pursue his or her interest, no socially rational outcome can emerge spontaneously

Corollary

• Since individual rationality is not sufficient for group rationality, there is no reason to suppose that a group of individuals will act in their common interest

Contribution Prisoners Dilemma

- Two players, A and B, are deciding whether to make contributions to the public good.
- If no one contributes, there are no benefits or costs. If B contributes and A free rides, then B receives a net payoff of 6-8 = -2, and A gets 6.
- When both players contribute, each receives a net gain of 4 (= 2*6 8).
- Non contributing is a dominant strategy because it provides a greater payoff regardless of the other player's action

Contribution Prisoners Dilemma: Payoffs

	B Do Not Contribute	B Contribute
A Do Not Contribute	Nash (0, 0)	(6, -2)
A Contribute	(-2, 6)	(4, 4)

Contribution Prisoners Dilemma: Ordinary Representation of Payoffs

	B Do Not Contribute	B Contribute
A Do Not Contribute	Nash (2, 2)	(4, 1)
A Contribute	(1, 4)	(3, 3)

Nash Equilibrium

- Non-cooperative games: when individuals pursue their own best payoffs without coordinating with others
- A Nash equilibrium results when an agent chooses his or her best or optimizing choice given that the other players have chosen their optimizing or best responses for this choice

Eight-Nation Prisoner's Dilemma Assumption: nations are identical

	Number of greenhouse-gases-reducing nations other than nation i							
	0	1	2	3	4	5	6	7
Do Not Cut	Nash 0	6	12	18	24	30	36	42
Cut	-2	4	10	16	22	28	34	Social Best 40

Other Collective Action Failures

- Assurance game
- Coordination game
- Chicken game

Assurance Game

- A minimal threshold of two units of a public good must be met before a benefit of 8 is received by all
- Provision cost is assumed to be 4
- There is no dominant strategy
- Collective action failure may occur if the bad Nash equilibrium is chosen
- Leadership matters in the assurance game

Assurance Game

	B Do Not Contribute	B Contribute
A Do Not Contribute	Nash (0, 0)	(0, -4)
A Contribute	(-4, 0)	Nash (4, 4)

Coordination Game

- Only the first unit of the public good supplied yield benefits of 6 to everyone
- The cost per unit is assumed to be 4
- There is no dominant strategy
- There are two Nash equilibriums in which one contributes and the other free rides
- Collective failure may result because an absence of successful coordination may end with the socially inferior diagonal cells being reached

Coordination Game

	B Do Not Contribute	B Contribute
A Do Not Contribute	(0, 0)	Nash (6, 2)
A Contribute	Nash (2, 6)	(2, 2)

Chicken Game

- The payoffs from collective inaction are negative rather than zero
- The game is named chicken because each player would like to hold out so that the other player acts (or "chicken out")
- Like the prisoner's dilemma game, it is assumed that the cost of contribution is 8 and the benefit is 6
- There is no dominant strategy
- There are two Nash equilibriums in which one contributes and the other free rides
- There is a collective failure because the social optimum is not achieved

Chicken Game

	B Do Not Contribute	B Contribute
A Do Not Contribute	(-3, -3)	Nash (6, -2)
A Contribute	Nash (-2, 6)	(4, 4)

Collective Action Problem Explained

- The benefits of collective action has the properties of public goods: they go to every individual in a group whether or not that individual has borne any of the costs of the collective action
- Each individual's provision of any amount of a collective good would generate "positive externality", i.e. confer some benefit to others
- Collective action suffers from the free rider problem. Thus, collective goods will not be provided through market mechanisms or other straightforward and voluntary arrangements

Collective Action Friendly Institutions

- Group size: small or large (a constant benefit and varying size, negative net benefits, organization costs, allocative inefficiency etc.)
- Group composition: privileged or not (a privileged group has a pattern of payoffs favorable to dominant players), homogeneous vs. heterogeneous groups
- Selective incentives: positive and negative (private or excludable joint products)
- Interaction: Repeated interactions among players (concern for reputation)
- Institutional Design: A federated structure

Exploitation of the great by the small

- Heterogeneous memberships would confront an exploitation problem
- The better-endowed members would carry the burdens of the less fortunate
- The dominant member bears the entire burden of collective provision alone
- Small members free-ride

Joint Products

- The collective activity yields multiple outputs that vary in their degree of publicness
- Some outputs may be private, while others may be purely or impurely public
- Bundling private products with public joint products can induce participation and contribution
- The greater the share of jointly produced excludable benefits to all benefits with the collective activity, the more successful will be the collective action

Tragedy of the Commons

- A property/resource which has many owners. Each has the right to use the property/resource but does not have the right to exclude others from using. The property ownership structure leads to over-utilization of the property/resource
- Fisheries, forests, oil pools, hunting grounds, deep-sea mineral beds, orbital bands in space are such examples

Coase Theorem: Controlling Externality through Assigning Property Rights

- In the absence of transaction costs, all government allocations of property are equally efficient, because interested parties will bargain privately to correct any externality
- As a corollary, Coase Theorem also implies that in the presence of transaction costs, government may minimize inefficiency by allocating property initially to the party assigning it the greatest utility.

Key Points of Coase Theorem

- Clarify property rights in order to internalize the externality
- It does not matter who owns the property. What matter most is the clarification of property rights
- Efficiency can be achieved by bargaining among the interested parties when transaction costs is negligible
- Government has an important role to play when transaction costs are significant

Information Problems

- Information asymmetry: one of the exchange parties has more information than the other
- Adverse selection: the "bad" products or customers are more likely to be selected
- Moral hazard: the risk that one party to a contract can change his behavior to the detriment of the other party once the contract has been concluded

Principal-Agent Problem

- Asymmetric information: a principal can view the final outcome but is unable to observe the agent's actual action
- The agent's incentive may not be compatible to the principal's interest
- Principal-agent problem in international organizations